Problem Solving in Upper-Level Courses

Lessons from the Paradigms Program

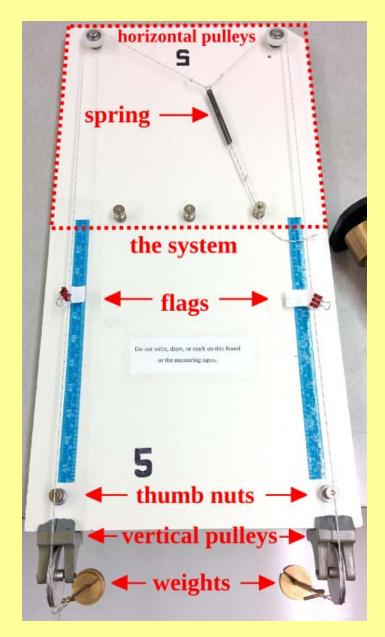
http://physics.oregonstate.edu/portfolioswiki

Corinne Manogue & the whole Paradigms Team

• Students have little experience with geometric visualization.

Suggestion

• Use tangible metaphors and kinesthetic activities to tap into students' embodied cognition.


Tangible Metaphors

Raising
Calculus
(Physics)
to the
Surface

Tangible Metaphors

Partial Derivatives Machine

Kinesthetic Activities

- Stand up.
- Each of you represents a point charge.
- Make a linear charge density.

• It takes effort to bring information into working memory.

Suggestion

• Use small whiteboards to help students activate the relevant information.

Small Whiteboards

• On your small whiteboard, write something you know about the dot product.

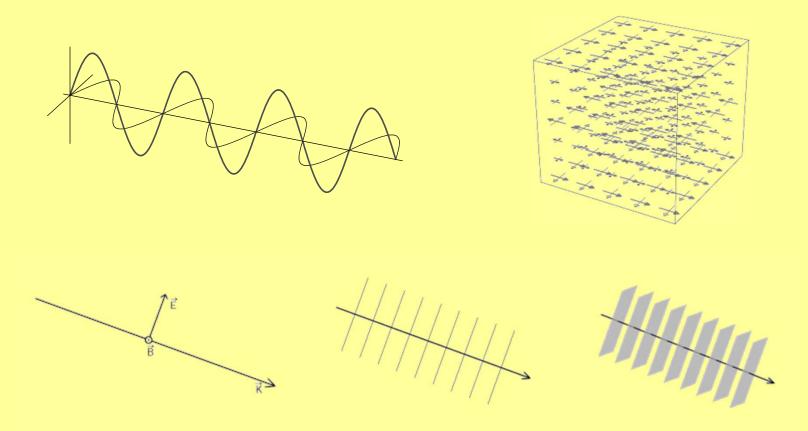
Affordances of Small White Board Questions

- Allow the instructor to see if everyone is on the same page.
- "Quiet" members of the class are encouraged to participate.
- Students vie to have their answers chosen.
- Keep everyone engaged and awake.
- Professional development: communication skills.

• Don't try to answer a question that students don't yet have.

Suggestion

• Use active engagement to prime "the teachable moment."


Compare and Contrast Activities

- On your medium whiteboards, construct a square grid of points, approximately two inches apart, at least 7 by 7.
- I will draw an origin and a vector *k* on your grid.
- For every point on your grid, imagine drawing the position vector \vec{r} to that point, calculate $\vec{k} \cdot \vec{r}$
- Connect the points with equal values of $\vec{k} \cdot \vec{r}$

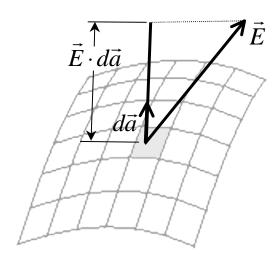
Affordances of Medium Whiteboards

- Provide the opportunity:
 - to develop and practice problem-solving strategies,
 - to compare and contrast answers,
 - for mini-presentations,
 - to discuss synthesis, evaluation, decisionmaking, etc.

Plane Wave Representations

• To become good problem-solvers, students must LEARN to move smoothly between multiple representations.

Suggestion


• Use activities that require students to go back and forth between multiple representations.

Multiple Representations

1. Flux is the total amount of electric field through a given area.

$$\Phi = \int \vec{E} \cdot d\vec{a}$$

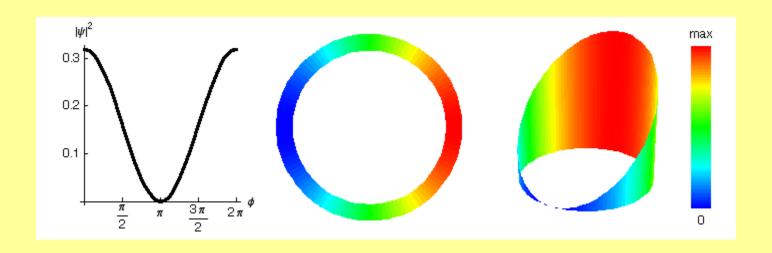
3.

6/2//10

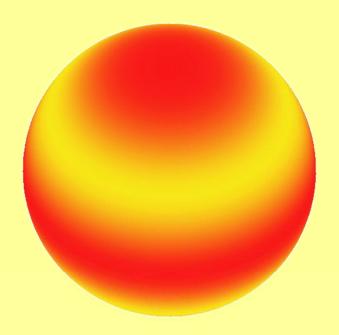
THE WITHOUTHY THOTASHOP

	Ket	Function	Matrix
Hamil- tonian	\hat{H}	$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$	$egin{pmatrix} E_1 & 0 & 0 & \cdots \ 0 & E_2 & 0 & \cdots \ 0 & 0 & E_3 & \cdots \ dots & dots & dots & dots \end{pmatrix}$
Eigen- state	$ n\rangle$	$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
Coeff- icient	$c_n = \langle n \psi \rangle$	$c_n = \int_0^L \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) \psi(x) dx$	$(0 \cdots 1 \cdots) \begin{pmatrix} c_1 \\ \vdots \\ c_n \\ \vdots \end{pmatrix}$

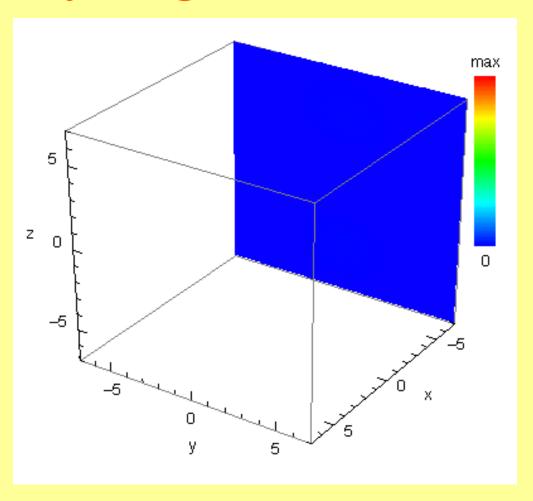
Effective Activities


- Are short, containing approximately 3 questions.
- Ask different groups to apply the same technique to different examples.
- Involve periodic lecture/discussion with the instructor.

• Students are smarter than you think, but know far less.


Suggestions

- Ask yourself when students would have learned something you expect them to know.
- Keep a list of "surprising" things that students don't know and use it to choose activities (PCK).
 - How to interpret the vertical axis.


Quantum Ring

Rigid Rotor—Spherical Harmonics

Hydrogen Atom

Simulations

- Design experiences based on known student problems.
- Choose thoughtfully:
 - "black box" (e.g. PhETs, OSP)
 - "open" (e.g. Mathematica/Maple)
 - "student code writing"
- Avoid "Ooooh-Aaahh!!!" by asking students to answer specific questions.

Active Engagement

- Effective but Slow
 - Precious commodity
 - Use wisely
- Special Needs of Upper-Division
- Easily Over-Scheduled
- Can Get Out-of-Synch
- Short Activities Mid-Lecture
- Moving Rooms: awkward but possible

Take-home Message

- You are in this for the long haul!
 - Join or build a learning community, preferably in your own department.
 - Make it safe for each person to grow in their own way.
 - Use reflective practice: If it worked, figure out why so you can do it again and share it. If it didn't work, figure out why so you can do it differently next time.

Lecture vs. Activities

- The Instructor:
 - Paints big picture.
 - Inspires.
 - Covers lots fast.
 - Models speaking.
 - Models problemsolving.
 - Controls questions.
 - Makes connections.

- The Students:
 - Focus on subtleties.
 - Experience delight.
 - Slow, but in depth.
 - Practice speaking.
 - Practice problemsolving.
 - Control questions.
 - Make connections.