Volume 5: Motion, Instructor Materials Table of Contents

Contents Page No.
I. Introduction
A. Overview of the Unit 1
B. Acknowledgments and Origin of Ideas 2
C. Safety Considerations 3
II. Student Notions About Motion
A. The Students' Prior Beliefs as Described in the Research on Student Conceptions 4
B. Conceptions that Students Can Develop in this Unit 6
III. Cognitive Rationale
General Comments 12
Specific Comments 13
IV. The Motion Unit
A. Suggestions for Implementation in the Larger Group Setting 18 with Separate Laboratory Class
B. Materials and Equipment 18
V. Sample Assessment Materials 20
VI. Selected Bibliography/References 26
VII. Student Investigations with Embedded Instructor Notes
Investigation 1: Constant Motion and the first type of graph
Activity M1.1: Exploring the First Type of Graph27
Activity M1.2: What difference would it make if you walked slowly, 32
but steadily, away from the detector compared to walkingfaster, but steadily, away from the detector? What aboutmotion toward the detector?
Activity M1.3: What would a position-time graph of the following motion 37
look like?
Activity M1.4: How would you move to exactly match the graph below? 40
Investigation 2: More Constant Motion and the second type of motion graph
Activity M2.1: Exploring the Second Type of Graph 44
Activity M2.2: What difference would it make on this new type of graph,if you walked slowly, but steadily, away from the detectorcompared to walking faster, but steadily, away from thedetector?
Activity M2.3: What would a velocity-time graph of the following motion 54
look like?
Activity M2.4: How would you move to exactly match the graph below? 57
Activity M2.5: What do you think the position-time graph might look like 62for a motion that made the velocity-time graph shown?
Activity M2.6: What do you think the velocity-time graph would look like 65

Activity M3.1: If we were to move away first constantly speeding up and then

constantly slowing down, what would the graphs look like?
Activity M3.2: Exploring the third type of graph
Activity M3.3: What does it appear the signs (+ and -) mean in this 81 third type of graph?
Activity M3.4: If we were to move toward the detector first constantly 83
speeding up and then constantly slowing down, what would the graphs look like?
Activity M3.5: Focus on Physical Science -- Words Used to Describe Ideas 89 About Motion
Investigation 4: More Changing Motion -- A Closer Look
Activity M4.1: If we were to allow a cart to roll down an inclined ramp, 91
what would its velocity and acceleration graphs look like?
Activity M4.2: If we were to allow a cart to roll down an even steeper inclined ramp, what would its velocity and acceleration graphs look like?
Activity M4.3: Using an example to explore what we think is meant by the 104 words "acceleration" and "velocity"
Activity M4.4: If we were to give a cart a quick shove and allow it to coast up 107 and then back down an incline before it is stopped, what would its velocity and acceleration graphs look like?
Activity M4.5: What is apparently meant by "acceleration" and "velocity" in 111 these graphs?
Activity M4.6: Does acceleration have direction? 115
Activity M4.7: Focus on Physical Science—Issues to confront concerning 117 velocity and acceleration and the graphs of velocity and acceleration

